Synthetic Aperture Radar Image Change Detection Using Fuzzy C-Means Clustering Algorithm

نویسندگان

  • Lincy Paul
  • P. Ramamoorthy
چکیده

This paper presents a novel approach to change detection in synthetic aperture radar (SAR) images based on image fusion and fuzzy clustering. The proposed approach use mean-ratio image and log-ratio image to generate a difference image by image fusion technique. In order to enhance the information of changed regions and background information in the difference image is based on the wavelet fusion rule. A reformulated fuzzy local c means clustering algorithm is used for differentiating changed and unchanged regions in the fused image, which is insensitive to noise and reduce the effect of speckle noise. By this method we get a better performance and lower error than the pre-existence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Fusion and Fuzzy Clustering based Change Detection in SAR Images

Change detection in remote sensing images becomes more and more important for the last few decades, among them change detection in Synthetic Aperture Radar (SAR) images are having some more difficulties than optical ones due to the fact that SAR images suffer from the presence of the speckle noise. This paper presents unsupervised change detection in multi-temporal Synthetic Aperture Radar (SAR...

متن کامل

Interactive Segmentation for Change Detection using Fuzzy Local Information C-Means Clustering and SWT in Multispectral Remote-Sensing Images

Change Detection is a process that analyzes images of the same scene taken at different times in order to identify changes that may have occurred between the considered acquisition dates. In the last decades, it has attracted widespread interest due to a large number of applications in diverse disciplines such as remote sensing, medical diagnosis, and video surveillance. The proposed method is ...

متن کامل

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm

Remote sensing applications such as Ecological monitoring, Disaster monitoring, Volcanic monitoring, surveillance and reconnaissance requires broad range imaginary data with very high resolution. Data captured under different times such as day or night and under different weather conditions poses adverse affects on retrieved results. Synthetic Aperture Radar (SAR) technology is used to mitigate...

متن کامل

Recognition of Changes in SAR Images Based on Gauss-Log Ratio and MRFFCM

A modified version of MRFFCM (Markov Random Field Fuzzy C means) based SAR (Synthetic aperture Radar) image change detection method is proposed in this paper. It involves three steps: Difference Image (DI) generation by using Gauss-log ratio operator, speckle noise reduction by SRAD (Speckle Reducing Anisotropic Diffusion), and the detection of changed regions by using MRFFCM. The proposed meth...

متن کامل

Synthetic Aperture Radar (SAR) image segmentation by fuzzy c- means clustering technique with thresholding for iceberg images

Fuzzy c-means (FCM) clustering algorithm is widely used for image segmentation. The purpose of clustering is to identify natural groupings of data from a large data set, which results in concise representation of system’s behavior. It can be used to detect icebergs regardless of ambient conditions like rain, darkness and fog. As a result SAR images can be used for iceberg surveillance. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013